BORING REALLY EXCITING ENGINEERING METHODS, EQUATIONS AND OTHER NERDY THINGS

North Carolina Coastal Federation Working Together for a Healthy Coast

So we have 2 land use scenarios, how do we quantify runoff volume?

Watershed EZ Tool

South Atlantic Alliance Watershed Plan

Project information	
Project Name:	South Atlantic Alliance
Project Address	Wrightsville Beach, NC
Contact information	
Watershed Monesti	90
Description	
Total Site Area (Ar)	
Total Basefine Impervisos Area (Ac)	
Rivert Resize	

Pre-Treatment Runoff Hydrographs

	Baseline Cond	itions			
De	scription:				
	Total Drainage Area (ac):	100.00			
HSG	Land Use	CN	Area (acres)	*	
d Use			Automation of the		
8	Open Space	60	55.00	555	
8	Open Space	61	45.00	458	
				_	
		_		-	
- Defined in		-			
r Denned La	ad Uses	-	1		
				_	
				_	
	Baseline Con	nposite Cur	ve Number >	61	
	Baseline T.				

Data Collection

Watershed Boundary

Land Use

- Impervious cover
- Open space
- Woods
- Others?

Soil Type

Rainfall Data

CN Method

United States Department of Agriculture

Natural Resources Conservation Service

Conservation Engineering Division

Technical Release 55

June 1986

Urban Hydrology for Small Watersheds

TR-55

Methodology

Rainfall Data

CATION			
tion (decimal degrees, use "-" for S and W): latitude:	longitude	submit	
tion (click here for a list of stations used in frequency analy	vsis for NC): select station		•
Tergelwood Roan Island Castle Ha	Point D yre	Storp Pores	a) Se (no b) Ci ()
Delco Northwest Sandy Creek Tel Leland Tel Wilmington	TT		
Winnabow Salver Lake	- Thrach		

Rainfall Data

	PDS	S-based pred	ipitation free	quency estin	nates with 90	0% confider	nce interval	s (in inche	s) ¹		
Duration		Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000	
5-min	0.525 (0.489-0.566)	0.624 (0.581-0.672)	0.729 (0.878-0.785)	0.812 (0.752-0.874)	0.917 (0.845-0.984)	0.995 (0.914-1.07)	1.00 (0.983-1.16)	1.16 (1.05-1.25)	1.26 (1.13-1.38)	1.35 (1.20-1.46)	
10-min	0.839	0.997	1.17	1.30	1.46	1.58	1.71	1.83	2.00	2.12	
	(0.782-0.904)	(0.925-1.07)	(1.09-1.26)	(1.20-1.40)	(1.35-1.57)	(1.46-1.70)	(1.56-1.84)	(1.66-1.97)	(1.79-2.15)	(1.89-2.29)	
15-min	1.05	1.25	1,48	1.64	1.85	2.01	2.16	2.31	2.51	2.67	
	(0.977-1.13)	(1.17-1.35)	(1.37-1.59)	(1.52-1.77)	(1.71-1.99)	(1.84-2.16)	(1.98-2.32)	(2.10-2.49)	(2.26-2.71)	(2.37-2.88)	
30-min	1.44	1.73	2.10	2.38	2.74	3.02	3.31	3.60	4.00	4.32	
	(1.34-1.55)	(1.61-1.87)	(1.95-2.20)	(2.21-2.56)	(2.53-2.94)	(2.78-3.25)	(3.02-3.56)	(3.27-3.88)	(3.59-4.32)	(3.84-4.67)	
60-min	1.79	2.17	2.69	3.10	3.65	4.10	4.56	5.05	5.74	6.30	
	(1.67-1.93)	(2.02-2.34)	(2.50-2.90)	(2.87-3.33)	(3.37-3.92)	(3.76-4.40)	(4.17-4.90)	(4.58-5.44)	(5.15-6.19)	(5.61-6.81)	
2-hr	2.12	2.58	3.28	3.87	4.71	5,43	6.22	7.08	8.34	9.42	
	(1.95-2.31)	(2.37-2.82)	(3.02-3.58)	(3.55-4.22)	(4.30-5.14)	(4.93-5.92)	(5.61-6.77)	(6.34-7.69)	(7.39-9.00)	(8.29-10.3)	
3-hr	2.26	2.75	3.52	4.1B	5.16	6.01	6.95	8.01	9.60	11.0	
	(2.06-2.48)	(2.53-3.01)	(3.23-3.85)	(3.82-4.57)	(4.69-5.62)	(5.43-6.55)	(6.24-7.58)	(7.12-8.71)	(8.44-10.4)	(9.55-12.0)	
6-hr	2.81	3,42	4.38	5.22	6.46	7.55	8.77	10.1	12.2	14.1	
	(2.59-3.09)	(3.15-3.77)	(4.03-4.82)	(4.77-5.72)	(5.87-7.07)	(6.81-8.26)	(7.86-9.58)	(8.98-11.1)	(10.7-13.3)	(12.1-15.4)	
12-hr	3.29	4.01	5.17	6.18	7.71	9.07	10.6	12.3	15.0	17.4	
	(3.00-3.65)	(3.65-4.44)	(4.70-5.72)	(5.60-6.83)	(6.92-8.49)	(8.10-9.97)	(9.39-11.6)	(10.0-13.5)	(13.0-16.5)	(14.8-19.1)	
24-hr	3.89	4,72	6.11	7,34	9.22	10.9	12.8	15.0	18.4	21.4	
	(3.54-4.33)	(4.31-5.27)	(5.56-6.81)	(6.65-8.16)	(8.27-10.2)	(9.69-12.1)	(11.3-14.2)	(13.0-16.7)	(15.6-20.8)	(17.8-24.1)	
2-day	4.61	5.58	7.16	8.54	10.6	12.5	14.6	16.9	20.6	23.8	
	(4.22-5.10)	(5.10-6.17)	(6.53-7.93)	(7.75-9.45)	(9.56-11.8)	(11.1-13.9)	(12.0-16.2)	(14.7-10.9)	(17.5-23.1)	(19.8-26.9)	
3-day	4.91	5.93	7.55	8.96	11.1	12.9	15.0	17.3	20.9	24.0	

Natural Volume Reduction

Landese Commental Residential Monts and Open Typen Change in Land Use 1981 to Present High Density Commercial Area

Soil Type

Map — Hydrologic Soil Group Scale (not to scale) * 27 Q Q, 100 marily 24 14 Rb

CN Method

From NEH-4, Chapter 10, NRCS (SCS) 1985

S = Maximum Soil Storage (inches)

$$S = \frac{1000}{CN} - 10$$

CN Method

From NEH-4, Chapter 10, NRCS (SCS) 1985

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Q = runoff(in)

$$P = rainfall(in)$$

- S = potential maximum retention after runoff begins (in) and
- $I_a = initial abstraction (in)$

$$I_a = 0.2S$$

$$S = \frac{1000}{CN} - 10$$

Watershed EZ Tool

South Atlantic Alliance Watershed Plan

Project information	E
Project Name:	South Atlantic Alliance
Project Address	Wrightsville Beach, NC
Contact Witemation	
Watershed Informatio	HR
Description	
Total Site Area (Ar):	
Total Baseline impervisos Area (Ac):	
River Resire	

Pre-Treatment Runoff Hydrographs

Methods of Treating Runoff

Volume Reduction BMPs

Volume Reduction BMPs

BMP Functions / Data

Volume Reduction Summation

Natural Losses

Watershed EZ

• Easy to analyze impact of small scale BMPs

Wet Ponds

Dry Ponds

Constructed Wetland

Constructed Wetlands

Location: Large Footprint Habitat Detination

Performance: Low Volume Removal Flood Control Evaporation High Water Table

Bioretention

Location: Great for Urban Areas Infiltration for Bad Soils

Performance: High Pollutant Removal - but not always runoff reduction Low Water Table High Cost

Downspout Disconnection

Location: Low Impact Blends In Small Footprint

Performance:

Highly Efficient High Water Table OK Low Cost

Infiltration Basin / Rain Gardens

Infiltration Systems

Urban Options

Location: Small Footprints Multi Functional Spaces Get What You Can

Urban Options

Easy to find....if you' re looking

Raintree Retrofit Sites

- **Residential Subdivison**
- Cisterns
- Permeable Driveways
- Infiltration Trenches
- Subsurface Gravel
 Wetland

Runoff Reduction Scenario Tool

Project Name	Name					Scenario Name					
Scenario	· - r	leccri	ntion	Bupoff Vol	Vol Beduction	2 Complete (from Baseline)	1	Design Bair	of all Depth		
Baceline	Description		Tighter vor	0.00 ac.8	vi complete (nom basenne)	4	Designman	nan bepar			
Goal #1					0.00 ac-R		4	3.88	3 in		
Goal #2					0.00 ac-it		4				
Goal #2					0.00 ac-rt		4				
doai #3					0.00 ac-n		1				
Structural BMP Detail	<u>د</u>			1		Non Structural BMP Det	ails	1			
Structurur Dinn Dettai	Cail	1	Aug	Total Volume			uno		1		
BMP Type	Tuno	=	Storage	Beduction	Est Cost			Valuma	Ectimated		
One should be dealers d	туре	1	Storage	neddodon	LS(COS(Devenue Disconnection		Deduction	C>		
Constructed wetland		1	1001	1001	\$0	Downspout Disconnection		Reduction	Lost		
						Liver A & B Soils	0		4		
						# of Downspouts	0	0 cf			
	<u> </u>	<u> </u>				Avg Roor Area per US	12.0		\$0		
						Liver L' & Li Soils	<u>C & D Soils</u> :		_		
		<u> </u>				# of Downspouts	0	0 cf			
	<u> </u>	<u> </u>				Avg Roof Area per US	12.0		L		
	<u> </u>										
						Green Root Conversions	Green Roof Conversions				
						Roof Area	0 sł	U Cł	\$0		
						Impervious Area Removal					
						Over A Soils	0 sf	0 cf			
						Over B Soils	0 sf	0 cf	1 🗛		
						Over C Soils	0 sf	0 cf] 🔊		
						Over D Soils	0 sf	0 cf			
						Stream Restoration					
						New Floodplain Area	0 sf	0 cf	\$0		
						Tree Planting					
						# of Trees	0	0.4	40		
						Avg Canopy Diameter	0.6t	1 0 01	\$0		
Total Volume Removed 0			0 cf	0.00 ac-	it Estima	ted Cost =	\$0				

