Chapter 5 Gathering Data and Creating a Watershed Inventory

Mariko Polk

GIS Specialist

Initial Research

Use MyWATERS Mapper

Not all monitoring stations are listed

Work with local water quality officials to determine if more monitoring stations exist

By Now the Following Data Will Have Been Collected

- O Watershed boundary
- O 12-Digit HUC
- O State and federal water quality classification
- O Impairments
- O TMDL information
- NPDES permitted facilities
- Water monitoring stations
- State basin or watershed
- O 303(d) and 305(b) Reports

Data Management

Use an Excel or Access spreadsheet to manage metadata

- O Increases efficiency
- O Avoids duplication
- O Ensures completeness
- O Metadata information describing data

Tabular .

Datasets

- Topic (monitoring, geographic, etc.)
- Source of data (agency)
- Number of monitoring stations
- Collection start date
- Collection end date
- Number of samples/observations
- Parameters
- Frequency
- Known quality assurance issues with the data
- Special comments/notes
- File name
- File Path

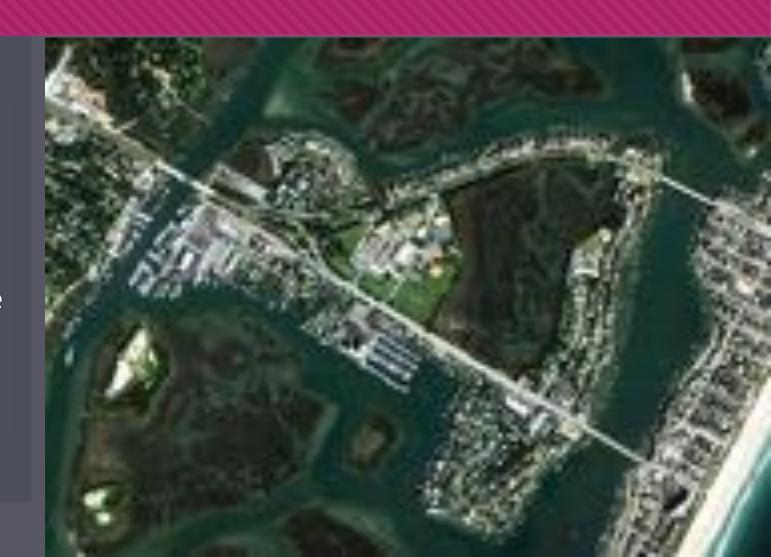
Required Data for Watershed EZ Tool

Section 5.3

- 1. Watershed boundary (Section 4.4)
- 2.Baseline year
- 3. Current and historical aerial photography
- 4. Parcel Data
- **5.**Zoning Data*
- 6. Hydrologic Soil Group (HSG) data
- 7.1-year, 24-hour depth storm model

*If the information is not included in the Parcel data

Baseline Year


- Depends on the goal and objectives of the watershed
- Stormwater Runoff Reduction
 Volume goal will be to mimic
 conditions during the baseline
 year
- Can be difficult to devise in areas with limited data

- Swimming advisories increase in mid-2000s
- Impaired on 2014 and 2012 305(d) Report
- Closed for shellfishing since first sampling in 1947 wastewater treatment plant (no longer there)

Aerial Photography

- Before-After land use change comparison
- Images
 - Before impairment/Baseline
 - Periods between
 - Present day

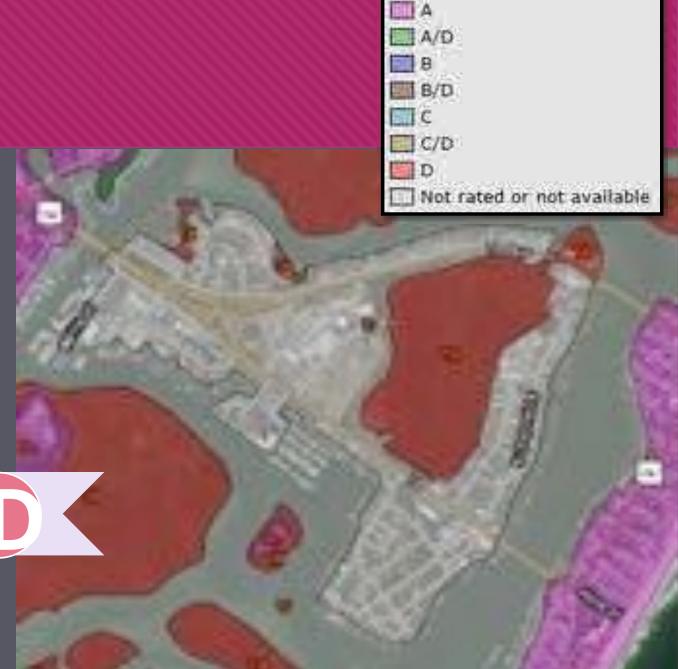
Parcel Data

- Show property boundaries and accompanying information
- Used to
 - Right-of-Ways
 - Impervious Coverage
 - Zoning

Not all Parcel data will include zoning information

Zoning Data

- O Used to determine land use designations of a parcel
- O Understand development patterns
- O Commercial vs Residential
 - OCan utilize more complex zoning designations for Watershed EZ


Soils

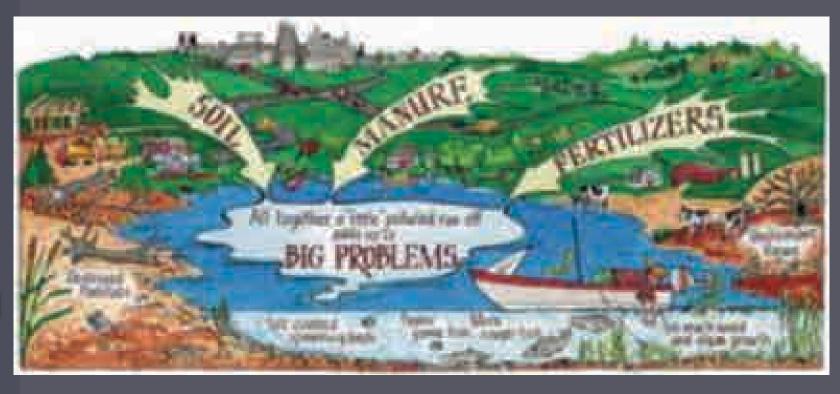
- O Hydrologic Soil Groups (HSG) (Group A, B, C & D)
- OHSG represent water infiltration rates

High Low

A B C D

INFILTRATION POTENTIAL

Soil Rating Polygons


Storm Model Depth

- Represents the depth of precipitation in a storm
- Used to quantify the amount of rain that will inundate the watershed
- Two storm model depths required
 - 2-year, 24-hour storm model depth
 - 1-year, 24-hour storm model depth

NOAA Precipitation Frequency Data Server

Source Analysis Data

- Informationregarding potentialsources of pollution
 - Point sources
 - Non-point sources
 - Past and present land use management practices

Additional Data

- Consider the watershed's history
- Determine what additional information is necessary for the plan
 - Necessary to address the goal and objectives
- GIS efficient way to quickly visualize and find information

ADDITIONAL INFORMATION TO RESEARCH BASED ON THE GOALS OF THE WATERSHED INCLUDE

- Biology
- Demographics
- Geomorphology
- Habitat
- Hydrology
- Land Use and Land Cover
- Physical and Natural Properties
- Source Water Assessments
- Topography
- Water Quality Standards
- Waterbody Conditions
- Waterbody Monitoring Data
- Watershed boundaries
- Wildlife

Questions?

Mariko Polk marikopolk@outlook.com